



## Reversible Barriers (ReBar)



Tom McCreery

Program Manager, Special Projects Office



## Military Need



#### Problem

- Barriers
  - Indoor direct access to doorways & hallways during
    - Hostage rescue
    - Building clearing operations
  - Outdoor close-off roadways & control enemy troop movement
- Existing Solutions are NOT Ideal
  - Require considerable time of formation or emplacement
  - Require heavy logistical support
  - Must be manually attached to surfaces
  - Cannot be reversed easily
  - Existing barriers
    - Concrete road barricades
    - Plywood barrier for doors & windows









# Reversible Barriers Enable Tactical Flexibility



#### Notional solution

Develop lightweight, reversible barriers to allow for tactical flexibility

## Military Impact

- Indoors
  - Easily restrict access into and out-of buildings
  - Quick reversibility ensures backup means for egress should primary methods be obstructed

#### - Outdoors

- Block and secure roads and bridges with minimum personnel and equipment
- Isolation of dangerous weapons for disposal at later times
- Rapid reversibility enables immediate utilization of infrastructure and gear



## Reversible Barriers (ReBar)



### Program Goal

 Develop portable, lightweight, reversible barriers for tactical flexibility consisting of an indoor site access denial (ISAD) and an outdoor site access denial (OSAD) barrier



- Operational Impact
  - -Reversible barriers allow fluid US force movement through operations:
    - Urban combat

- Ground intelligence
- Reconnaissance

- Hostage search and rescue
- Surveillance



## ReBar Program Structure



#### Phased development

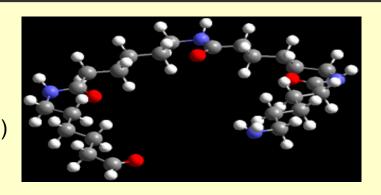
#### -Phase I

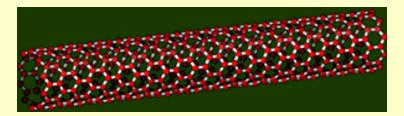
 Laboratory scale testing to demonstrate proposed technology overcoming technical challenging issues (TCIs)

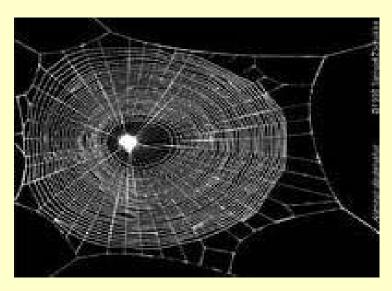
#### -Phase II

- Evaluation on full-scale ISAD or OSAD test beds including structures:
  - Doorways, hallways, windows, vent ducts
  - Two-lane bridge with guardrails.

#### -Phase III


- Demonstrate the proposed barrier system at Military Operations in Urban Terrain (MOUT) site
- -Concepts to be tested at each phase at SwRI ReBar Testbed





## Technologies for Notional Approach



- Ideal barrier is a complete system
- Potential barrier component approaches
  - Foams
    - Polymeric diphenylmethane diisocyanate (PMDI)
    - Polyurethane
    - Other polymers
  - Composite materials
    - Ceramics
    - Carbon nanotubes
  - Inflatable structures
    - Rigidized inflatables
  - Electrospun polymers synthetic silk
  - Kevlar mesh
    - Currently used in ballistic protective systems
  - Combinations of above technologies









#### Indoor Site Access Denial Barrier



 Need: There is a need to control access to doorways and hallways during hostage rescue and building clearing operations



- Desired barrier characteristics presented to potential performers:
  - Strong barrier remains intact when subjected to forces exerted by a fully equipped infantryman
  - Lightweight portable barrier components for easy transport to remote locations
  - Fast reversibility with reversing agents available only to US troops

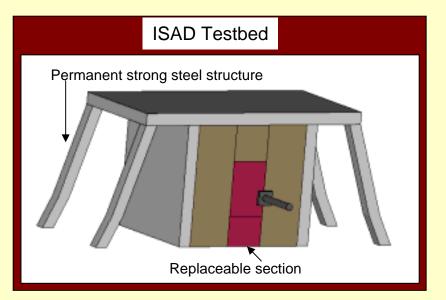


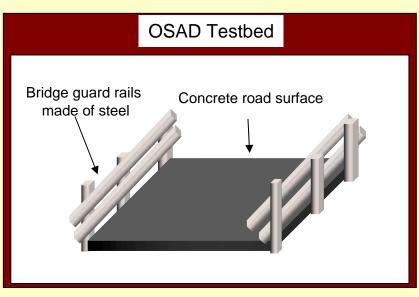
### Outdoor Site Access Denial Barrier



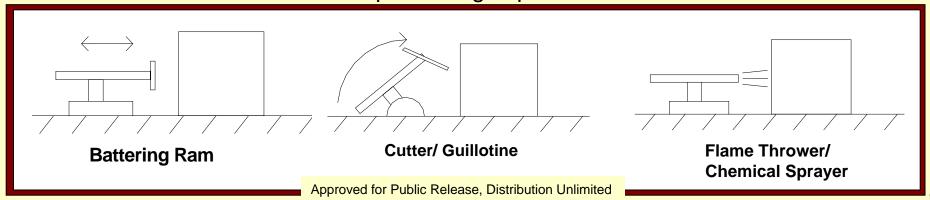
 Need: There is a need to control access to streets and alleyways to control access during hostage rescue and other urban operations




- Desired barrier characteristics presented to potential performers:
  - Strong barrier remains intact when subjected to forces exerted by a fully lightweight truck
  - Lightweight portable barrier components for easy transport to remote locations
  - Fast reversibility with reversing agents available only to US troops




## **Barrier Integrity Verification**




- Testbed at Southwest Research Institute (SwRI)
- Independent government testing facility





The SwRI testbed will have multiple testing capabilities

